Texture Analysis Based on the Gray-level Co-occurrence Matrix Considering Possible Orientations
نویسنده
چکیده
Texture is literally defined as consistency of a substance or a surface. Technically, it is the pattern of information or arrangement of structure found in an image. Texture is a crucial characteristic of many image type and textural features have a plethora of application viz., image processing, remote sensing, content-based imaged retrieval and so on. There are various ways of extracting these features and the most common way is by using a gray-level cooccurrence matrix (GLCM). GLCM contains second order statistical information of neighbouring pixels of an image. In the present work, a detailed study on a sample image (8 bit gray scale image) pattern is carried out with an aim to develop a methodology that acts as a non destructive and contactless way of describing the surface texture. The study involves the use of a contemporary method, known as absolute value of differences (AVD) when the information of the image is not present in higher frequency domain. The simulated results show that AVD can be used as an alternative to the classical inertia of moment (IM) computing and directions do matter while GLCM processing on image pattern. Moreover it is shown that Sobel edge-detector operator along with GLCM may be used to predict the surface texture quantitatively.
منابع مشابه
Three Dimensional Texture Computation of Gray Level Co-occurrence Tensor in Hyperspectral Image Cubes
The traditional gray level co-occurrence matrix (GLCM) is in two-dimensional form. Because hyperspectral imagery in the feature space has the characteristic of volumetric data, it has a great potential for three-dimensional texture analysis. Previous studies have successfully extended traditional 2D GLCM to a 3D form (Gray Level Co-occurrence Matrix for Volumetric Data, GLCMVD) for extracting f...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملFault condition recognition based on multi-scale co-occurrence matrix for copper flotation process
Image processing technology has been successfully applied to fault detection of copper flotation processes, and the key to realize image processing based fault condition recognition is accurately extracting froth image features closely related to key production indices. To extract texture features of froth images in real-time, a multi-scale gray level co-occurrence matrix (M-GLCM) method is pro...
متن کاملFeature Fusion Technique for Colour Texture Classification System Based on Gray Level Co-occurrence Matrix
In this study, an efficient feature fusion based technique for the classification of colour texture images in VisTex album is presented. Gray Level Co-occurrence Matrix (GLCM) and its associated texture features contrast, correlation, energy and homogeneity are used in the proposed approach. The proposed GLCM texture features are obtained from the original colour texture as well as the first no...
متن کاملA Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm
To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013